
L4Android: A Generic Operating System Framework for
Secure Smartphones

Matthias Lange1 Steffen Liebergeld1

Adam Lackorzynski2 Alexander Warg2 Michael Peter1

1Security in Telecommunications
Technische Universität Berlin and Deutsche Telekom Laboratories

{mlange,steffen,peter}@sec.t-labs.tu-berlin.de

2Chair of Operating Systems
Technische Universität Dresden

{adam,warg}@os.inf.tu-dresden.de

ABSTRACT

Smartphones became many people’s primary means of com-
munication. Emerging applications such as Near Field Com-
munication require new levels of security that cannot be en-
forced by current smartphone operating systems. Therefore
vendors resort to hardware extensions that have limitations
in flexibility and increase the bill of materials. In this work
we present a generic operating system framework that does
away with the need for such hardware extensions. We encap-
sulate the original smartphone operating system in a virtual
machine. Our framework allows for highly secure applica-
tions to run side-by-side with the virtual machine. It is
based on a state-of-the-art microkernel that ensures isola-
tion between the virtual machine and secure applications.
We evaluate our framework by sketching how it can be used
to solve four problems in current smartphone security.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: General – Sys-
tem architectures

General Terms

Security

Keywords

Smartphones, Secure Operating Systems, System Virtual-
ization, Near Field Communication

1. INTRODUCTION
Smartphones have become omnipresent devices. They

combine the computing power previously known from desk-
top computers with the mobility and connectivity of cellular
phones. With their plethora of interfaces like Bluetooth,
Wifi, and the cellular network they remain connected to
the Internet at all times. User-installable applications allow

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPSM’11, October 17, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1000-0/11/10 ...$10.00.

users to customize their smartphone with features accord-
ing to their needs. Therefore, many people have adopted
smartphones as their primary means of communication.

With their computing power and widespread adoption,
smartphones promise to materialize the idea of ubiquitous
computing. That made major companies such as Google,
Apple, and Microsoft invest a lot of money and resources
to increase the rate of innovation. New applications and
use cases, which were previously unimaginable on this class
of devices, appear at a short rate. One emerging trend is
using Near Field Communication (NFC) for authentication,
mobile payment [24], ticketing and secure banking. These
applications have high demands on security.

It is the task of the operating system (OS) to enforce
the security of the system. Android has become the most
popular mobile OS [13] in terms of market share. It is de-
veloped by Google and the Open Handset Alliance as an
open source project. Unfortunately Android is riddled with
security problems, such as delayed security updates and an
insufficient access control model [15]. To improve on An-
droid’s security, a number of solutions were proposed by the
academic research community. These range from extensive
taint tracking [46], behavioral analysis [33], mocking inter-
faces [7], application of mandatory access control [47, 17],
analysis of remote duplicates [22], label based tracking [36],
to an implementation of a custom privacy mode [49].

These solutions rely on the integrity of the Android kernel.
However, kernel integrity cannot be ensured when a device
is rooted. Rooting can happen voluntarily by the user to
enable custom features or by malware due to a vulnerability
of the Android kernel. A recent study found 88 vulnerabili-
ties in the Android kernel [14], which shows that unintended
rooting is a serious threat. This number of vulnerabilities
is inherent to the monolithic architecture of the Android
kernel. Therefore Android is not suited for prospective ap-
plications that have high demands on security.

We address future demands on security with a novel OS
base architecture. In our work, we do not improve on An-
droid security, but provide an isolated environment for ap-
plications with high demands on security. The Android OS
is securely encapsulated inside a virtual machine (VM).

1.1 Contributions
This work has two major contributions. One is the intro-

duction of a general OS framework for mobile devices that
allows for highly secure applications. The second contribu-
tion is the detailed evaluation of our framework. There we

1

present how our framework can solve current smartphone
security issues.

We designed a generic framework for secure smartphone
architectures and implemented a proof-of-concept setup that
runs on a real phone. It consists of three core components. A
state-of-the-art microkernel establishes high assurance isola-
tion boundaries. Our framework comprises the infrastruc-
ture for applications with high demands on security. These
are implemented as applications directly on the microker-
nel. Consequently, these applications have a tiny trusted
computing base (TCB) and lend themselves to certification.
The third core component are virtual machines, which act
as a secure container to run the original smartphone OS.

We show how our framework can be used to solve four
problems in current smartphone security.

Software Smartcards: Our framework facilitates the se-
cure implementation of smartcard functionality in soft-
ware.

Unified Corporate and Private Phone: We show how
a private and a business phone can be unified on one
device in a secure manner.

Mobile Rootkit Detection: We describe how our frame-
work enables rootkit detection on mobile devices.

Hardware Abstraction: We propose to implement device
specific drivers in a layer below Android. This allows
Google to supply generic kernel versions that are read-
ily applicable to all devices, which allows for much
faster security updates. It also enables vendors to
supply non GPL compliant drivers without violating
Linux’ development rules.

The rest of the paper is organized as follows. In Section 2,
we give an overview on the background of our work. Sec-
tion 3 describes details on the vulnerabilities of Android. We
proceed in Section 4 with details on the design of our frame-
work. L4Android is our prototype implementation of the
framework which we describe in Section 5. In Section 6, we
demonstrate how our framework solves four long-standing
security challenges. Section 7 gives an overview on related
work. In Section 8 we conclude and summarize our results
and contributions. We also provide an outlook on future
work.

2. BACKGROUND
In this section we provide the reader with background in-

formation on microkernels and virtualization in the context
of mobile devices. We briefly outline the general hardware
architecture of a smartphone. The architecture of Android
is described in Section 2.4.

2.1 Microkernel
The OS kernel runs at the most privileged mode of the

CPU (kernel or supervisor mode). The applications run with
less privileges in user mode.

Because of the kernel running with the highest privileges,
all functionality critical to maintain system security has to
be implemented in kernel mode. The essential mechanisms
implemented in the kernel are protection domains, schedul-
ing and means of communication between protection do-
mains.

Additionally to those essential mechnisms, monolithic ker-
nels such as Linux implement more functionality like file sys-
tems, device drivers, and protocol stacks. The drawback of
this architecture is that monolithic kernels contain function-
ality with high complexity. Because no means of isolation
exist in kernel mode, any in-kernel bug can modify kernel
memory, leading to crashes or to the installation of rootkits.

In contrast to monolithic kernels a microkernel imple-
ments only the essential mechanisms outlined above. File
systems, device drivers, and protocol stacks are implemented
as user-mode tasks [27]. This dramatically reduces the com-
plexity of the kernel. Isolation between user-mode tasks is
enforced with address spaces. All communication between
tasks is done via efficient explicit kernel-mediated inter-pro-
cess communication (IPC).

2.2 Virtualization
A formal definition of virtualization was made by Popek

and Goldberg [21]. They define a VM to be an efficient,
isolated duplicate of a real machine. A special piece of soft-
ware, the virtual machine monitor (VMM), establishes the
VM. The formal model requires a CPU with two modes, a
privileged mode (kernel mode) and a less privileged mode
(user mode). Guest code runs in user mode under the con-
trol of the VMM.

For an instruction set architecture (ISA) to be virtualiz-
able all sensitive instructions need to trap into kernel mode
when executed in user mode. Sensitive instructions are in-
structions that produce different results when executed in
user mode as compared to being executed in kernel mode.
According to this definition the x86 [28] and ARM [40] ISA
were found to be non-virtualizable.

To implement virtualization on non-virtualizable architec-
tures, several well-known workarounds exist.

Emulation In an emulator all guest-instructions are inter-
preted and their results computed in software. Hybrid
approaches allow for guest user-mode code to execute
directly on the host CPU. However, emulation comes
with a significant performance penalty [20].

Binary Translation In systems using binary translation,
the guest-code is modified prior to execution. Sensi-
tive instructions are replaced with either non-sensitive
ones or with explicit calls to the VMM [30]. Binary
translation can be more efficient than pure emulation,
but is still less efficient than native execution.

Rehosting OS rehosting is a port of the guest’s kernel from
the machine interface to the host’s kernel interface.
This effectively makes the guest kernel an application
of the host OS. Such a port does not require an addi-
tional VMM1.

To enable more efficient virtualization solutions, Intel and
AMD added hardware virtualization capabilities to their
CPUs [42]. ARM recently announced similar virtualization
support for their Cortex-A15 design [41]. While hardware
virtualization support is widespread in desktop systems to-
day, it hasn’t found its way into the embedded market yet.

1However, one can argue that the adapted OS-kernel takes
the role of the VMM.

2

2.3 Smartphone Architecture
Modern smartphones comprise many complex subsystems.

The central one is the application processor that runs the
smartphone OS such as Android or iOS and all the applica-
tions. Other systems include the baseband, GPS and audio
hardware. See Figure 1 for a conceptual hardware layout of
a smartphone.

SoC Memory

Baseband

Flash

Memory

Smartphone (internal view)

SIM card

GPIO

I2C

SPI

USB

CPU

Boot ROM

Image Signal

Processor

Application Processor (Soc)

Flash

Controller

GPU

Display

Controller

Timers

Interrupt

Controller

Memory

Controller

UART

Figure 1: The basic design of a modern smartphone.

The application processor comes in the form of a System
on a Chip (SoC). The CPU, memory and interrupt con-
troller, timer as well as additional functional units are inte-
grated on one silicon chip. This design helps to reduce the
bill of materials and power usage. Usually the SoC also inte-
grates a graphics processing unit and controllers for system
buses such as I2C, SPI and USB. These buses are used to
connect peripheral devices.

The baseband is the phone’s gateway to the cellular net-
work. The baseband uses credentials stored on the SIM
card to identify a subscriber on the mobile network. The
SIM card is a smartcard and forms an isolated execution
environment.

2.4 Android Architecture
In general Android is a software stack for smartphones

and tablets. It consists of the kernel, the Android runtime,
libraries, an application framework, and the applications.
Each of these parts will be described briefly in this section.

Kernel Android is based on a specially crafted Linux ker-
nel. Google enhanced Linux to better address the needs of
mobile platforms with improved power management, bet-
ter handling of limited system resources and a special IPC
mechanism.

Libraries Android provides a set of native libraries that
are used by various components in the system. This includes
libraries for media, 2D/3D graphics, and a custom C stan-
dard library (bionic). The functionality of these libraries
is exposed to applications by the Application Framework.
Many libraries are based on open source projects. Exam-
ples are WebKit and SQLite.

The Android Runtime is mainly made of the Dalvik
VM, a register-based Java virtual machine. Dalvik runs Java
code compiled to a special format (dex), which is optimized
for low memory footprint. Everything on top of this layer is
written in Java.

Applications Android applications are written in Java.
Android ships with a set of core applications for telephony,
personal information management, and Internet browsing.
For improved performance, applications can include native
code written in the C language. Native code is integrated
with the Java code through JNI. It does not benefit from the

Java abstractions (automated memory management, garbage
collection).

3. THREATS
We identified four main issues which make Android vul-

nerable to attacks. First, security critical software updates
are delayed or not deployed at all. Second, the Linux ker-
nel is not an adequate OS kernel for secure systems. Third,
rooted phones disable many of the security features, which
are in place. Fourth, Android’s permission system is too
coarse grained to effectively protect critical system resources.

3.1 Delayed System Updates
Android is an open source software project. In addition

to the custom components implemented by Google, it builds
on other open source projects such as WebKit and the Linux
kernel. It is characteristic to such projects that they are de-
veloped by a loosely coupled international community. To
keep track of the development process they use publicly
available source code repositories and public bug trackers
to collect bug reports.

In software security the time span from the discovery of
a vulnerability until the deployment of the security patch
is critical. During this time span the system is vulnerable
and attackers race to create exploits. Vulnerabilities be-
come known to the general public as soon as the resulting
patch is submitted to the public repository. This increases
the visibility of a vulnerability for attackers, who may start
to create exploits and attack unpatched systems. Therefore
timely patch deployment is vital for a system’s security. In
Linux distributions, for example, lots of effort is spent on
update systems to ensure quick deployment of security up-
dates.

To set themselves apart from others, device manufacturers
augment Android with custom user interfaces and features.
These additions require in-depth modification of the An-
droid source code. Google largely develops Android behind
closed doors and releases the source only at certain mile-
stones. This style of development has the drawback that
the device vendors cannot continuously keep their source
tree up to date. Therefore they need to port their custom
user interfaces and features to the new version as soon as
the new code is released by Google. After porting, the fea-
tures need to go trough quality management. All in all, this
is a time consuming and costly effort, which is often pro-
hibitive. Keeping their software up-to-date is of little value
for the device manufacturer in terms of market value, when
the device is already sold.

Android does not allow for selective updates, but relies
on full system images that have to be provided by the de-
vice manufacturer. A full system image requires bandwidth
and disrupts the user’s work flow. Therefore, device man-
ufacturers usually do not fix individual vulnerabilities but
accumulate updates.

These factors introduce a significant delay in the deploy-
ment of updates, which results in millions of devices with
known and unpatched vulnerabilities.

Security features, such as full disk encryption, are intro-
duced with new Android releases, but are not backported to
existing versions. A recent study by Google [23] about the
distribution of different Android versions revealed that more
than 90% of the Android devices are still using Android 2.1
and 2.2. The most recent version 2.3 released in Decem-

3

ber 2010 is deployed on less than five percent of Android
smartphones. This shows that Google’s attempts at intro-
ducing better security has limited effects for devices that are
already deployed.

3.2 Linux Kernel
Android is based on the Linux kernel. Linux implements

a monolithic architecture. All kernel components, includ-
ing device drivers, run in kernel mode, where no isolation
between components is provided. Any kernel bug that can
be exploited enables an attacker to modify kernel memory,
and thereby mitigate all security measures of the kernel.
Therefore kernel updates, as well as extensive testing and
validation of kernel code are vital to Android security.

Device manufacturers often need to implement custom
drivers for their hardware. This driver code is often not
contributed back to the Linux community. As a consequence
these drivers do not go through the community review pro-
cess and are often of poor quality. Porting the drivers to
new versions of Linux is often not considered worth the ef-
fort due to cost constraints and the work required for test
and validation. Therefore many devices run outdated Linux
kernels.

A recent study on the stock Android Froyo kernel, ver-
sion 2.6.32, found 88 security critical bugs [14]. This gives a
rough impression of the security of Android kernels. How-
ever, due to the bad driver code supplied by vendors, we
suspect the error rate of deployed kernels to be even higher.

3.3 Rooted Phones
Rooting is the process that overcomes the kernel’s in-

tegrity barrier. It can happen in two ways. First, volun-
tarily by the user who wants to be able to install additional,
potentially unauthorized applications. This type of rooting
is often done by installing a modified firmware, including a
new kernel image, on the device. Second, by malware such
as DroidDream [1] in order to gain maximum privileges on
the infected system. This type of rooting is achieved by ex-
ploiting known security flaws in the respective smartphone
OS.

Rooting requires tampering with the OS kernel which de-
stroys its integrity. A rooted system cannot put trust in
its kernel. The modified kernel might disable Android secu-
rity measures, contain malware such as key loggers, or sub-
tly alter the system’s behavior to leak private information.
Therefore rooting is a serious threat to smartphone secu-
rity. This problem becomes even more pronounced, since
two major Android device vendors announced rootability as
a marketing feature [39, 18] for their devices.

3.4 Android Permission System
Android implements mandatory access control (MAC) in

the form of a permission system. At installation time an ap-
plication can request permission to access system resources
such as location, Internet, or the cellular network, from the
user. The user is then presented with a screen allowing him
to either grant all the permissions or cancel the installa-
tion. It is not possible to selectively accept or deny access
privileges. Thus, many users simply accept such permission
requests without considering their implications.

Another problem is that the permissions are too coarse
grained [15]. If an application was granted Internet access,
it is free to communicate with any server on the Internet.

If this application was also granted access to the Android
address book, nothing prevents it from sending the address
book’s content to a remote server.

Using live taint tracking, Enck et al. [46] found that two
thirds of the applications they analyzed, exhibited suspi-
cious handling of private data. Static code analysis revealed
potential privacy leaks in even more applications [45].

With many applications being distributed via the Android
market, its acceptance process has the potential to filter
malicious applications. However, the Android market was
found to distribute malware [16, 31].

4. FRAMEWORK
We consider the monolithic architecture of Android as the

main reason for its security problems. Monolithic compo-
nents consist of numerous subsystems. A monolithic com-
ponent needs to be equipped with all permissions required
by its subsystems. A bug in one of them suffices for an at-
tacker to tamper with any part of the component and to
leverage all of its permissions.

The design of our OS frameworks is based on the principle
of divide and conquer. Instead of having complex monolithic
components, the framework hosts multiple smaller compo-
nents. Each component implements one basic service and
is equipped with only the permissions needed for its correct
operation (Principle Of Least Authority, POLA [34]). This
helps confining attacks to the concerned component.

High level functionality is implemented with the help of
many basic components that communicate with each other.
Thereby the system behaves like a distributed system. Thus,
we need a secure communication mechanism that enables
components to request services from one another. Commu-
nication requires a naming mechanism to locate a communi-
cation partner, and a mechanism to enforce access permis-
sions.

Dividing monolithic systems into smaller subsystems is a
complex task, because these subsystems have complex de-
pendencies with one another. This problem is prominent
with OS kernels. Therefore it is not possible to apply our
OS construction mechanism to existing OSes. Instead, our
framework provides virtual machines to run existing sys-
tems. Security conscious applications are implemented out-
side of the VM. Even in the event of a compromised VM
these applications maintain their integrity.

In the next sections we will describe the basic building
blocks of our system. We start with an in-depth descrip-
tion of how components are isolated, and how we handle
secure communication. Section 4.2 will introduce the mi-
crokernel, which forms the secure anchor of our framework.
Furthermore we provide the reader with details on our con-
crete implementation. Our microkernel is augmented with a
runtime environment that implements basic services for ap-
plications, and thus facilitates the design and development of
secure applications. We will then proceed to describe how
our framework supports virtual machines to host existing
smartphone OSes.

4.1 Component Isolation and Interaction
Our system encapsulates subsystems in components. Com-

ponents are implemented in protection domains, and it is the
duty of the OS kernel to ensure temporal and spacial isola-
tion between components. Components can provide services

4

to other components. Services are modeled as objects, and
are implemented inside protection domains.

Components can request services from other components
via explicit message passing. To avoid the problem of the
confused deputy, we went for object-capabilities [6], which
unite naming and access permissions. Holding a capability
entitles a component to communicate with the respective
service. The kernel enforces the access permissions of capa-
bilities.

We resorted to a naming scheme, where capability names
are valid inside the respective component only (local nam-
ing). This greatly facilitates nesting of subsystems.

The capability-based communication system forms the ba-
sis for any other functionality in the system. In the following
sections we will show how it is used to build the functionality
for a whole system.

4.2 Secure and Small Kernel
The kernel is the only component that is running with the

highest system privileges. It is responsible for establishing
and maintaining the isolation of components running on top
as applications.

Because of the characteristics outlined in Section 2.1 a
microkernel is a suitable foundation for our OS framework.
It has a considerably lower complexity than a monolithic
kernel. This benefits applications in that their TCB can be
optimized for their use-case.

The aforementioned concepts are implemented in a mod-
ern microkernel named Fiasco.OC. It is being developed as
an open source project, and its sources are available at its
public website2.

4.2.1 Kernel Functionality

To maintain isolation and functionality of the system, the
kernel offers the following key mechanisms.

Protection Domains To establish isolation between com-
ponents the kernel provides protection domains, called
tasks. Each task implements an address space for pro-
viding virtual memory and a capability space holding
the capabilities for that task.

Execution is provided by threads. A thread executes the
code provided by the applications. A task can host
multiple threads, facilitating multi-processing environ-
ments.

Communication plays a crucial role in a system consist-
ing of many components that need to interact with
each other. Message passing, also called IPC, is an
operation where two threads explicitly invoke a mes-
sage passing operation to be able to exchange a limited
amount of payload data. IPC is a synchronous opera-
tion, meaning that a thread will block until the com-
munication partner has also entered the corresponding
IPC operation.

Interrupts are a mechanism to handle asynchronous events.
They are used for both hardware device-generated in-
terrupts and for software-generated events. The re-
ceiver of an interrupt cannot decide whether the event
has been generated by hardware or by another software

2http://os.inf.tu-dresden.de/fiasco/

component. When used as a software mechanism, in-
terrupts allow for asynchronous notifications between
threads, where one thread triggers an interrupt and
continues execution. The receiving thread receives the
event when it is ready. No payload can be transferred
with this operation. Interrupts are modeled using IPC.

Scheduling is implemented in the kernel and is responsible
for dispatching a thread that is ready to run. The
default scheduling scheme is a fixed-priority, round-
robin scheduler that strictly selects the thread with
the highest priority. Within the same priority level
the threads are scheduled round robin. The scheduler
is also used to place threads on the different cores in a
multi-core system.

Virtualization Containers When using hardware assisted
virtualization3 the kernel must implement the basic
functionality of creating virtual machines and imple-
ment world switching. The object implementing this
virtualization container is called VM. A VM is similar
to a task and provides the guest physical memory.

Threads, typically those implementing a virtual ma-
chine monitor, have to use special functionality to en-
ter a virtual machine for doing a ’world-switch’ and to
start executing guest code.

Object Creation Factory objects are used to create new
objects in the system. The concept does not only cover
kernel objects but all objects that may exist in the sys-
tem. For the kernel, the kernel-factory can, for exam-
ple, create new tasks, threads, and interrupts. Facto-
ries also implement a resource accounting scheme to
prevent resource exhaustion.

4.2.2 Resource Access Delegation

Having described the functionality of the kernel still leaves
open how access rights to resources are transferred between
protection domains. Those resource can either be memory
pages or objects.

The corresponding operation is called map and can be
used in two variants. The first version is available when a
task holds a capability on another task and thus can grant
access rights to it. Using this type of operation does not
require any consent of the receiving task. In contrast, the
second type uses specifically typed IPC messages that allow
transfering access rights to a receiver. The receiver specifies
where those resources should be mapped to in its virtual
memory or capability space.

The map operation implements the principle of privilege
attenuation (POPA) [34]. A sender of a mapping can only
grant access rights to others that it possesses itself, with the
same or lower rights. For example, a memory page that is
writable for the sender can be mapped with read-only rights
to a receiver. A read-only mapping can only be mapped to
other tasks with read-only permission.

The reverse operation of map is called unmap. This oper-
ation recursively revokes access rights from those protection
domains that had previously received the access rights.

4.2.3 Fault Handling and Resolution

Fault and exception handling is implemented in user-mode
services. Upon receiving a fault, the microkernel forwards
3Examples being Intel VT and AMD’s SVM

5

those to a designated handler thread. Such a handler is
defined for every thread in the system. It is named pager
after its main purpose of paging a thread. When receiv-
ing a page-fault IPC message, the pager selects a memory
page and sends a reply with an embedded memory mapping.
Upon receiving the reply the thread will continue executing.
The page-fault resolution process happens transparently for
the faulting thread. The mechanism for other exceptions
works similarly. This mechanism allows for implementing
arbitrary paging strategies in user-mode components with-
out specific support in the microkernel itself.

4.2.4 Communication Channels

A communication channel is a special object provided by
the kernel that allows two protection domains to use IPC to
exchange data. Such a channel has a sender and a receiver
side. A receiver binds to such a channel to be targeted as
the recipient of a message by the kernel. The IPC sender
cannot be directly identified by the receiver as in a system
with local naming the receiver has no means to identify the
IPC partner. Instead a label value identifies the channel
through which the message is received. The label must be
defined by the receiver upon binding to the channel, cannot
be influenced by the sender and is visible to the receiver
only. Multiple channels can be created when communication
partners need to be distinguished.

For sending an IPC message, the sender invokes a capa-
bility to exchange data with the corresponding object. In
case of the communication channel another user-mode im-
plemented object is invoked and receives the message.

Neither the sender nor the receiver designate threads for
communication but use communication channels instead.
This enables to transparently interpose a communication re-
lationship. For example, a server providing a basic memory
allocator to clients might be interposed with a more sophis-
ticated allocator that implements resource quotas. Neither
the basic memory allocator nor the client will notice a dif-
ference except in timing behavior.

4.3 Runtime Environment
The runtime environment implements major operating sys-

tem infrastructure and forms the first layer of user-mode ser-
vices. Its goal is to abstract from the pure kernel provided
functionality and offer generic and known interfaces to ap-
plications as well as implementing policies for those. The
environment consists of separate components, called servers,
and libraries to be used by applications. The runtime envi-
ronment is called L4Re4.

The root of all services is the roottask, which handles
core resources such as memory. The roottask starts a single
application, which is usually the application launcher. It is
responsible for starting the remaining parts of the system.

The platform is configured and managed by an I/O com-
ponent. It initially scans the platform for devices and then
provides clients access to those devices. Access rights are
exclusively granted by the I/O component based on a con-
figuration that defines which devices or device classes can
be accessed by which clients.

Functionality for accessing the servers is implemented in
the provided libraries that contain the needed communica-
tion code. Standard functionality such as a subset of POSIX,
as well as C, C++ and pthread libraries complete the set.

4http://os.inf.tu-dresden.de/L4Re/

4.4 Bootstrapping the System
In the following we will shortly describe the boot sequence

on a typical device. Whenever the device is switched on,
it will start at a defined location in the device and load a
platform bootloader. This bootloader includes functionality
to access internal storage, typically flash memory, where the
OS image is stored. It will read this image into the device
memory, verify its signature and finally launch it.

The OS image starts with the boot code that setups the
initial components in memory and finally continues execu-
tion with the kernel. The kernel initializes itself and when
done, starts the roottask. The roottask initializes itself and
finally starts the launcher application, which boots the rest
of the system. The launcher application is the first compo-
nent that has the ability to load further applications from
storage devices by using other services that provide device
driver functionality.

To facilitate a secure boot chain, the initial platform loader
needs to verify the OS image for authenticity. Given that,
the launcher application needs to verify any application it
loads from external media. The infrastructure for the cryp-
tographic operations can be implemented in a TPM-like sub-
system in the hardware, being a real TPM or a software im-
plementation. In any case the cryptographic keys must be
kept securely within the device.

4.5 Virtual Machines as Legacy Containers
Creating an OS from scratch is an uphill battle against

existing OSes. Years of development and innovation went
into the design and implementation of existing mobile OSes
and their applications. Furthermore, they incorporate new
features at a fast rate. Thus we want to leverage existing
applications and their features within our framework.

However, applying a new OS construction mechanism to
existing OSes is not feasible. Furthermore, due to resource
constraints it is not feasible to port existing applications
to a new OS. VMs encapsulate existing OSes together with
their applications. This enables existing software and fea-
tures on the new system. However, this setup does not im-
prove on the security of the existing OS. Security sensitive
applications are not implemented within the VM, but run
as isolated components outside of it. Even if the VM gets
compromised, it cannot tamper with the secure applications.

Our framework offers two different types of VMs. One is
using rehosting and is applicable to nonvirtualizable plat-
forms. The other leverages the hardware virtualization fea-
tures of current x86 based mainstream CPUs. For our proto-
type we settled with virtualizing the Android OS because it
is currently the most popular smartphone OS. However, our
approach is applicable to other smartphone OSes as well5.
Our Android VM is based on technology that virtualizes
Linux. Therefore we first present these base technologies,
and will then proceed to introduce our virtualized Android.

4.5.1 L4Linux

L4Linux is a port of the Linux kernel to our microkernel.
It is binary compatible with Linux, which allows us to run
ordinary Linux applications. It can be given access to a
restricted set of hardware by the I/O manager but it can
also run without any access to peripheral hardware. Besides

5For our virtualization technology, we need to modify the
smartphone OS kernel. Due to restrictive licenses modifying
some smartphone OSes is not allowed.

6

being used to run Linux applications, L4Linux can also act
as a service provider for other tasks outside of the virtual
machine. An important use case for L4Linux is to use it as
a driver provider. For this, L4Linux is given access to one
specific device, and enhanced with an abstracted interface
that enables data exchange with other L4Re tasks. This
enables us to use devices without requiring the cumbersome
work of reimplementing device drivers.

L4Linux currently runs on the ARM and x86 architec-
tures, and has shown good performance for many work-
loads [25]. It is available from its public website6.

4.5.2 Karma VMM

Karma7 is a VMM that runs as a task on top of the micro-
kernel. It coordinates and controls a VM using the mecha-
nisms provided by the microkernel (see Section 4.2). Karma
strives to be of minimal complexity and thus resorts to ag-
gressive paravirtualization. However, the changes required
to a guest OS kernel are small compared to the changes re-
quired for L4Linux.

To set up a VM, Karma creates a VM object. A portion
of Karma’s memory is mapped to the VM object as guest
physical memory. Karma donates its processing time to the
VM object by using a special system call to issue the world-
switch. Karma regains control upon external events such as
timer interrupts or the guest initiating a hypercall.

Each Karma instance hosts exactly one VM. Because of
the isolation properties of the microkernel, a possible com-
promise of the VMM does not render other VMs compro-
mised.

Karma currently supports a paravirtualized Linux as a
guest OS. The changes to Linux are small and about 3.000
source lines of code (SLOC). The VMM requires a CPU
with hardware virtualization support (SVM, VT-x) and has
shown to offer exceptional performance [43].

As described in Section 2.2 hardware virtualization sup-
port has not found its way into the embedded market yet.
However, we are confident that such features will soon be
deployed in future smartphones and other high-end mobile
devices. Intel announced the Moorestown successor Med-
field to have VT-x support. ARM introduced the Cortex-
A15 design [41]. This renders Karma an efficient alternative
to L4Linux on future devices.

5. L4Android
The L4Android project builds on the runtime environ-

ment and microkernel projects. L4Android’s goal is to run
Android in a virtual machine on top of the microkernel. We
offer two solutions for this, one being based on L4Linux, the
other based on the Karma VMM.

L4Android is derived from L4Linux and was created by
adding code to L4Linux that is required by Android. This
code is provided by Google and comprises the binder IPC
mechanism, wakelock support and the low memory killer.

The Karma-based version of L4Android was created in a
similar fashion. Here we applied the Karma Linux patch to
the stock Android kernel provided by Google.

Both versions of L4Android run the Android user-mode
software stack as is, without further modifications. We tested

6http://l4linux.org/
7http://karma-vmm.org/

the Android versions Eclair (2.1), Froyo (2.2) and Ginger-
bread (2.3).

L4Android is an open source project, and its code reposi-
tories are accessible at its public website8.

5.1 Prototype Implementation
We have implemented the core components of our frame-

work for both the x86 and ARM architectures. Our proto-
type works on an ARM based iMX.51 board and an x86-
based smartphone.

The ARM based iMX.51 board from Freescale features a
800MHz Cortex-A8 core that can be found in many cheaper
smartphones today. The board is equipped with 512MB
of RAM. On this platform we can run the microkernel, its
accompanying runtime environment and a fully functional
L4Android.

Our framework also supports a developer phone from Aava
Mobile. It is built around Intel’s x86-based mobile CPU
Moorestown. The CPU is clocked with up to 1.6GHz and
has access to 512MB of RAM. Please refer to Figure 5 for a
picture of this smartphone. It runs L4Android side-by-side
with L4Linux.

6. EVALUATION
To show the generality of our framework, we will now de-

scribe how it can solve four important security scenarios. We
show how our framework can be used to implement Secure
Software Smartcards to be used for NFC applications or soft-
ware SIM cards. The Unified Corporate and Private Phone
scenario shows how the business and the private phone can
be securely combined on one device. The third scenario de-
scribes how our framework can be used for Mobile Rootkit
Detection, a technology that was previously restricted to
desktop computers. The last example shows how the frame-
work is used as an Hardware Abstraction Layer (HAL) to
help device manufacturers in avoiding the GPL and to ease
the update problem of Android.

6.1 Software Smartcard
Smartcard: Plastic card containing an integrated circuit

that implements a general purpose processor and memory.
Increasingly, smartcards also contain a number of coproces-
sors that accelerate special computations like cryptographic
operations. Smartcards are used as debit cards, in access
control systems, and SIM cards.

Recent smartphones contain NFC hardware. NFC has
many potential uses, such as mobile payment, and ticket-
ing [38]. Applications such as mobile payment require a
trustworthy security anchor for their operation. Usually
smartcards are used as a security anchor, as they provide
a physically isolated execution environment together with
a portion of memory that holds cryptographic key mate-
rial. The cryptographic keys never leave the smartcard and
therefore cannot be leaked by a compromised smartphone
OS. The SIM card is a special smartcard. It is used to au-
thenticate a subscriber to the mobile network. As SIM cards
are available in all mobile phones, a natural decision is to
use the SIM card as the security anchor for NFC as well.
However, the SIM card is issued and controlled by the net-
work operator. Many stakeholders, for example, financial
institutes that want to make use of NFC, cannot give away

8http://l4android.org

7

control of key material to third parties. They have their
own certification processes, and therefore rely on their own
smartcards. Unfortunately, the number of installable (phys-
ical) smartcards is limited by the available space inside the
smartphone’s case.

A software-based implementation of smartcards on the ap-
plication processor has the following merits:

Flexibility Creation and destruction of smartcards can be
done instantaneously and without hardware modifica-
tion. The software smartcard could be installed via
download, which would be much more convenient than
having the network operator send them via postal mail.

Multiple Instances Today’s smartphone CPUs are pow-
erful enough to house more virtual smartcards than
are possible to install in hardware.

Consolidation The phone does not need to house many
physical smartcards and their corresponding smart-
card readers. This helps reducing the bill of materials
and potentially make smartphones smaller and thin-
ner.

A smartcard implemented on the application processor
needs to be run in a secure environment. The TrustZone [44]
technology implements an additional processor mode that
establishes an isolated and secure environment. The Trust-
Zone secure environment is populated via secure boot at sys-
tem boot time, and cannot be exchanged at runtime. Usu-
ally smartphone vendors do not allow custom software in
the TrustZone environment. Therefore TrustZone is not an
option for secure software-implemented smartcards.

Instead, the software smartcard needs to be isolated in a
secure environment that is established by the OS. The OS
has to ensure that tasks running on the application processor
cannot infer any information about the key material nor the
cryptographic routines of a virtual smartcard. An authority
that is to certify the virtual smartcard needs to make sure
there are no implementation errors, which could be exploited
to gain access to the smartcard. Correctness can only be
asserted by software verification. Klein et al. [4] managed
to formally verify a microkernel. Software verification hardly
scales up to more than 10 thousand SLOC, which renders
verification of a monolithic OS such as Linux infeasible.

We propose a system that is based on our framework.
The microkernel consists of about 20.000 SLOC and can be
certified. Furthermore the microkernel implements secure
scheduling to mitigate timing-based side-channel attacks. In
our framework Android cannot tamper with the software
smartcards, and therefore does not need to be certified. Our
solution is applicable to all current smartphones and does
not require any hardware extensions.

A possible setup with three smartcards is shown in Fig-
ure 2. It consists of an Android partition that runs iso-
lated from the three virtual smartcards. One virtual smart-
card acts as a SIM card and does away with the need for a
physical one. The other two virtual smartcards are used for
NFC. The virtual smartcard multiplexer forwards requests
between the NFC hardware and different virtual smartcards.

The TCB of a virtual smartcard is small. It consists of
the microkernel, the memory manager, the IO manager, and
the smartcard multiplexer.

Runtime Environment

Microkernel

CPU, Memory

Loader
IO

Manager

Memory

Manager

Baseband

Secure GUI

NFC

Virtual Machine

Android

Virtual

SIM

Virtual

Smartcard

Multiplexer

Virtual

Smartcard

Virtual

Smartcard

Figure 2: Setup running three virtual smartcards.

They act as a softSIM and for NFC applications.

6.2 Unified Corporate and Private Phone
Smartphones are heavily used in today’s businesses. Busi-

ness executives use them to connect to their corporate IT.
The phone is used to aggregate information critical to the
business such as email, documents, and other PIM data. Un-
solicited revelation of that data might cause business deals
to fail or cause the companies stocks to crash.

Therefore business smartphones are usually provisioned
by the corporation’s IT departments. They make sure that
the devices are configured according to the company’s secu-
rity policies. Additionally, the IT department installs cer-
tificates and cryptographic keys to make the phone connect
to corporate VPNs. The devices might further be locked
down to run only certified applications. Private use is often
disallowed by the company’s security policies.

Because of these measures, corporate smartphones are
often cumbersome and inconvenient to use. Consequently
many business executives carry an additional private phone
with them. This is unnecessarily inconvenient and running
both tasks on one device is desirable.

Using our framework, we can build a smartphone architec-
ture that unifies the corporate and private phone in a secure
way on one device. The setup is depicted in Figure 3. Two
instances of L4Android form two Android partitions where
one is for private and the other for business purposes. The
private partition is left as is. In fact we allow rooting of this
partition, as it has no consequences for the corporate parti-
tion. The corporate partition can be hardened according to
the business’ security policies e.g. with SELinux [47].

Isolation has to be enforced not only between the two
Android instances but at the user interface as well. Access to
the graphics hardware and input devices such as touchscreen
and buttons is multiplexed by a secure GUI server [37].

Access to devices shared by both Android instances needs
to be multiplexed. We do this by virtualizing the hardware
with a special device driver that implements multiple per-
sonalities, and presents the VMs with their own virtual de-
vices. Virtualizing the baseband presents a particular chal-
lenge and is part of our current research.

For our demonstrator we decided to avoid the problem by
assigning exclusive baseband access to one partition. This
partition implements telephony and SMS functionality ex-
clusively. The data connection is shared over a virtual Eth-
ernet connection with the other Android partition.

Figure 5 shows our demonstrator running on the Aava
developer phone. It runs an L4Android partition side-by-
side with an L4Linux partition.

8

Runtime Environment

Microkernel

CPU, Memory

Roottask Loader
IO

Manager

Virtual Machine

Memory

Manager
Name

Server

Virtual Machine

Android Kernel

Private

Android

(unrestricted)

Corporate

Android

(hardened)

Android Kernel

Baseband

Baseband

Driver

Virtual

Ethernet

Virtual

Ethernet

Virtual

GUI

Virtual

GUI

Secure GUI

Figure 3: Setup implementing two isolated parti-

tions on a mobile device. A secure hardened par-

tition for business critical information and an open

private one.

6.3 Mobile Rootkit Detection
Rootkits are a class of malware that is known to hide in-

side the kernel. A rootkit modifies the kernel’s behaviour
to hide itself, to open new backdoors, and to carry out
other malicious activities. Recent work [26, 19, 12] showed
that rootkits on smartphones are feasible and pose a serious
threat to the users privacy and security.

Rootkit detection requires access to kernel memory. A
compromised kernel must not mitigate rootkit detection.
Therefore, rootkit detection software needs to be isolated
from the kernel. Recent work presented rootkit detectors
that either use special devices with DMA memory access [5],
special coprocessors [48] or that reside inside a hypervi-
sor [32]. These solutions operate in a layer below the target
OS and therefore do not rely on the target OS kernel’s in-
tegrity. Applying such approaches on a smartphone seems
desirable, but was not feasible because there was neither spe-
cial hardware nor virtualization in commodity smartphones.

With L4Android, we provide a virtual machine to run
Android. Therefore we investigate how existing hypervisor-
based rootkit detectors are applicable to our system. The
L4Android architecture differs significantly from traditional
hypervisor designs. Thus, further work is needed to port
existing rootkit detection software.

6.4 Hardware Abstraction Layer
Android smartphones are sold by numerous manufactur-

ers. The device models differ in their hardware. Depending
on their target price, they come with different SoCs with dif-
ferent CPUs, clockings and total amounts of memory. Other
distinctive components are the included screens, cameras
and other peripherals.

The device manufacturers need to provide custom drivers
for each of these components. The manufacturers strive to
keep the innards of their devices a trade secret. However,
with Linux being licensed under the terms of the GPL, they
are obliged to provide drivers that reside in the kernel in
source form. To avoid revealing to much intellectual prop-
erty, many device drivers are split into two parts. One is an
in-kernel proxy that is distributed in source form. It does
not contain device logic, and is usually not contributed to

Linux mainline. The other is a user-mode component that is
distributed in binary form and contains all the device logic.

When Google issues an update containing a new kernel
version, the device manufacturers need to port their drivers
to the updated kernel’s interfaces. Subsequently they have
to go through the quality assurance processes. Both steps
are time consuming, and the costs are often a prohibiting
factor.

We propose to implement a generic hardware abstraction
layer. The abstraction layer runs below the Android kernel
and contains all device specific drivers. This setup is de-
picted in Figure 4. The Android kernel would contain only
generic drivers that interface with the hardware abstraction
layer. These generic drivers are the same on all smartphones.
Thus, a new kernel version can be provided by Google, and
can be deployed on all Android smartphones without fur-
ther involvement of the device manufacturer. This allows
for much faster deployment of security critical kernel up-
dates.

Having the drivers below Android solves the problem with
the GPL license of the Linux kernel. As they are imple-
mented below Android, they do not need to be released in
source form. Therefore the vendors do not need to resort to
split drivers, which reduces their complexity. The generic
drivers in the Android kernel can be contributed to Linux
mainline.

Device drivers in the hardware abstraction layer are imple-
mented as individual tasks, each running in its own address
space. A potential driver crash is confined within this ad-
dress space. Using watchdogs, the system can detect a driver
crash, and restart the driver. Such a crash would even be
transparent to Android.

Microkernel

CPU, Memory

Runtime Environment

Roottask Loader
IO

Manager

Memory

Manager
Name

Server

Baseband

Hardware Abstraction Layer

Graphics

Driver

Generic Interface

Touchscreen

Driver

Generic Interface

WLAN

Driver

Generic Interface

Bluetooth

Driver

Generic Interface

USB

Driver

Generic Interface

Virtual Machine

Android

User-level

Software Stack

Android Kernel

Generic

Graphics

Driver

Generic

Touchscreen

Driver

Generic

WLAN

Driver

Generic

Bluetooth

Driver

Generic

USB

Driver

Figure 4: Proposed architecture containing a

generic hardware abstraction layer. Device specific

drivers are implemented in its own layer. The An-

droid kernel implements a generic driver interface

that is the same on all devices.

7. RELATED WORK
Related work comprises microkernel research, mobile vir-

tualization and efforts to improve Android security.
OK Labs implemented the microkernel OKL4 [3], which is

used in the Motorola Evoke. It is used to consolidate appli-
cation and baseband processors. In contrast to our solution
OKL4 is proprietary, and closed source.

9

Klein et al. [4] designed and implemented seL4. SeL4 is
the first microkernel formally verified to implement its spec-
ification. This microkernel is tuned for verification and does
not implement multiprocessor support. Similar to OKL4,
the seL4 kernel was not released in source form.

In contrast to L4Re, which was specifically developed as
the user-mode counterpart to the Fiasco.OC kernel, Gen-
ode [2] is a framework designed to support a variety of ker-
nel interfaces. Fiasco.OC is supported as one of 8 different
kernels. Even though Genode supports the use of paravirtu-
alized Linux, its primary vision is a small component-based
general purpose OS rather than a virtualization platform. It
strives to replace UNIX-based OSes in application domains
where high security requirements meet dynamic workloads.

Schmidt et al. [8] show how a mobile trusted module
(MTM) can be implemented on a microkernel based sys-
tem. The same authors also show how virtual SIMs can be
implemented in such a system [35]. This work covers the
SIM only.

VMware introduced a mobile virtualization solution. It
is designed to run an Android VM on top of Android. The
setup implements a Type-2 hypervisor [9] and the integrity
of the VM relies on the integrity of the host OS kernel.
VMware’s emphasis is on manageability and it does not im-
prove on security. Hwang et al. [29] reported on a port of
Xen to ARM platforms. In Xen all VMs depend not only
on the hypervisor, but on a full OS and its applications that
act as Dom0. With a full OS in their TCB, VMs on top of
Xen are not an option for highly secure applications.

Enck et al. [46] implemented an online information flow
tracking system on Android. Beresford et al. [7] mocked
hardware resources to revoke application’s access to partic-
ular resources at run-time. Zhang et al. [47] applied manda-
tory access control to Android with SELinux. Zhou et al. [49]
implemented a custom privacy mode to enable fine-grained
control over application’s access on private information. All
these solutions improve on Android security, but fall short
if the kernel is compromised.

8. CONCLUSION AND FUTURE WORK
In this work we presented a generic OS framework that

facilitates the creation of secure smartphone systems. The
framework consists of three core components. A microkernel
acts as the secure foundation and is accompanied by a user-
mode runtime environment. The third component are VMs
to securely encapsulate existing smartphone OSes.

We implemented the core components of our framework
on a mobile x86 and ARM platform. This implementation
is available as the open source L4Android project. We eval-
uated our framework by showing how it can be applied to
solve four challenges in smartphone security such as secure
software smartcards, and a unified corporate and private
mobile phone. Our framework does not rely on special hard-
ware features and is thus readily applicable to a wide range
of existing smartphones.

The security demands of future smartphone applications
cannot be fulfilled by existing smartphone OSes. Fixing the
security problems of those OSes is infeasible. Instead we
demonstrated that our framework succeeds in creating a se-
cure execution environment for applications with high de-
mands on security. Thereby it enables future use-cases of
smartphones, such as NFC based mobile payment.

8.1 Future Work
Future work comprises three areas: power efficiency, hard-

ware accelerated graphics, and design and implementation
of a modern secure GUI for smartphones.

Power Efficiency As a first step we have to assess the
power efficiency of our system, in setups that differ in
the number of virtual machines and in the number of
secure tasks. The second step is then to improve upon
these numbers, and apply proper power management
facilities.

Hardware Accelerated Graphics Today our framework
comprises a secure GUI that relies on software render-
ing. Software rendering consumes precious computing
time from the CPU and leaves the powerful graph-
ics processors idle. To decrease CPU utilization and
improve overall responsiveness, we are working on a
secure hardware accelerated GUI.

Support more Smartphone OSes We work on the sup-
port of more smartphone OSes. As a study, we ported
the OpenBSD9 kernel on our microkernel [10]. We are
investigating if the iOS kernel allows for a port as well.

Apart from improving the framework, we are looking for-
ward to applying it to manifold security problems. We
are working on bringing honeypots to the world of smart-
phones [11].

Acknowledgements

We would like to thank Collin Mulliner for his instructive
comments and support. We also thank Dmitry Nedospasov
for his thorough review of the paper.

9. REFERENCES
[1] DroidDream.

http://www.androidpolice.com/2011/03/01/the-mot

her-of-all-android-malware-has-arrived-stole

n-apps-released-to-the-market-that-root-you

r-phone-steal-your-data-and-open-backdoor/,
March 2011.

[2] Genode OS Framework. http://genode.org, June
2011.

[3] C. Walker and M. Konstant. OK Labs Enables
World’s First Virtualized Smartphone, with Mobile
Virtualization Solution. http://www.ok-labs.com/rel
eases/release/ok-labs-enables-worlds-first-vir

tualized-smartphone-with-mobile-virtualizat,
2009.

[4] G. Klein, K. Elphinstone, G. Heiser, J.

Andronick, D. Cock, P. Derrin, D. Elkaduwe,

K. Engelhardt, R. Kolanski, M. Norrish, T.

Sewell, H. Tuch and H. Winwood. seL4: Formal
Verification of an OS Kernel. In ACM Symposium on
Operating System Principles (2009), ACM,
pp. 207–220.

[5] A. Baliga, V. Ganapathy and L. Iftode.
Detecting Kernel-level Rootkits using Data Structure
Invariants. IEEE Transactions on Dependable and
Secure Computing 99, Preprints (TBD 2010), TBD.

9http://l4openbsd.org

10

[6] A. Lackorzynski and A. Warg. Taming
subsystems: capabilities as universal resource access
control in L4. In Proceedings of the Second Workshop
on Isolation and Integration in Embedded Systems
(2009), IIES ’09, ACM, pp. 25–30.

[7] A. R. Beresford, A. Rice, N. Skehin and R.

Sohan. MockDroid: trading privacy for application
functionality on smartphones. In 12th Workshop on
Mobile Computing Systems and Applications (March
2011).

[8] A.U. Schmidt, N. Kuntze and M. Kasper. On the
deployment of mobile trusted modules. In Wireless
Communications and Networking Conference, 2008.
WCNC 2008. IEEE (31 2008-april 3 2008), pp. 3169
–3174.

[9] Barr, K., Bungale, P., Deasy, S., Gyuris, V.,

Hung, P., Newell, C., Tuch, H., and Zoppis, B.

The vmware mobile virtualization platform: is that a
hypervisor in your pocket? SIGOPS Oper. Syst. Rev.
44 (December 2010), 124–135.

[10] C. Ludwig. Porting OpenBSD to Fiasco.
http://www.isti.tu-berlin.de/fileadmin/fg214/fi

nished_theses/cludwig/OpenBSDonFiasco.pdf, June
2011. Bachelor’s Thesis, Security in
Telecommunications, Technische Universität Berlin.

[11] C. Mulliner, S. Liebergeld and M. Lange.
HoneyDroid - Creating a Smartphone Honeypot. In
Poster session of the IEEE Symposium on Security
and Privacy (May 2011), IEEE.

[12] C. Papathanasiou and N. J. Percoco. This is not
the droid you’re looking for...
http://www.defcon.org/images/defcon-18/dc-18-p

resentations/Trustwave-Spiderlabs/DEFCON-18-T

rustwave-Spiderlabs-Android-Rootkit-WP.pdf, July
2010.

[13] Canalys. Android increases smart phone market
leadership with 35 share.
http://canalys.com/pr/2011/r2011051.html, 2011.

[14] Coverity Inc. Coverity Scan 2010 Open Source
Integrity Report. http://www.coverity.com/html/pr
ess/coverity-scan-2010-report-reveals-high-ris

k-software-flaws-in-android.html, 2010.

[15] D. Barrera, H. G. Kayacik, P. C. van Oorschot

and A. Somayaji. A methodology for empirical
analysis of permission-based security models and its
application to android. In Proceedings of the 17th
ACM conference on Computer and communications
security (New York, NY, USA, 2010), CCS ’10, ACM,
pp. 73–84.

[16] D. Maslennikov. Malware in the Android Market:
here we go again.
http://www.securelist.com/en/blog/11267/Malwar

e_in_the_Android_Market_here_we_go_again, 2011.

[17] D. Muthukumaran, A. Sawani, J. Schiffman, B.

M. Jung and T. Jaeger. Measuring integrity on
mobile phone systems. In Proceedings of the 13th
ACM symposium on Access control models and
technologies (New York, NY, USA, 2008), SACMAT
’08, ACM, pp. 155–164.

[18] Droid Life: A Droid Community Blog. Motorola
Eases Up on Locked Bootloader Stance, Plans to
Unlock Portfolio in 2011?

http://www.droid-life.com/2011/04/26/motorola-e

ases-up-on-locked-bootloader-stance-plans-to-u

nlock-portfolio-in-2011/, April 2011.

[19] E. Monti. Iphone Rootkit? There’s an App for That.
http://sandiego.toorcon.org/index.php?option=

com_content&task=view&id=48&Itemid=9, October
2010.

[20] F. Bellard. QEMU, a fast and portable dynamic
translator. In Proceedings of the annual conference on
USENIX Annual Technical Conference (Berkeley, CA,
USA, 2005), ATEC ’05, USENIX Association,
pp. 41–41.

[21] G. J. Popek and R. P. Goldberg. Formal
requirements for virtualizable third generation
architectures. Commun. ACM 17 (July 1974),
412–421.

[22] G. Portokalidis, P. Homburg, K. Anagnostakis

and H. Bos. Paranoid Android: versatile protection
for smartphones. In Proceedings of the 26th Annual
Computer Security Applications Conference (New
York, NY, USA, 2010), ACSAC ’10, ACM,
pp. 347–356.

[23] Google Inc. Distribution of Android Versions.
http://developer.android.com/resources/dashboa

rd/platform-versions.html, May 2011.

[24] Google Inc. Wallet. http://www.google.com/wallet,
June 2011.

[25] H. Härtig, M. Hohmuth, J. Liedtke, J. Wolter

and S. Schönberg. The performance of
µ-kernel-based systems. In Proceedings of the sixteenth
ACM symposium on Operating systems principles
(New York, NY, USA, 1997), SOSP ’97, ACM,
pp. 66–77.

[26] J. Bickford, R. O’Hare, A. Baliga, V.

Ganapathy and L. Iftode. Rootkits on smart
phones: attacks, implications and opportunities. In
Proceedings of the Eleventh Workshop on Mobile
Computing Systems & Applications (New York,
NY, USA, 2010), HotMobile ’10, ACM, pp. 49–54.

[27] J. Liedtke. On micro-kernel construction. In
Proceedings of the fifteenth ACM symposium on
Operating systems principles (New York, NY, USA,
1995), SOSP ’95, ACM, pp. 237–250.

[28] J. S. Robin and C. E. Irvine. Analysis of the Intel
Pentium’s ability to support a secure virtual machine
monitor. In Proceedings of the 9th conference on
USENIX Security Symposium - Volume 9 (Berkeley,
CA, USA, 2000), USENIX Association, pp. 10–10.

[29] J. Y. Hwang, S. B. Suh, S. K. Heo, C. J. Park, J.

M. Ryu, S. Y. Park and C. R. Kim. Xen on ARM:
System virtualization using Xen hypervisor for
ARM-based secure mobile phones. In Consumer
Communications and Networking Conference, 2008.
CCNC 2008. 5th IEEE (2008), IEEE, pp. 257–261.

[30] K. Adams and O. Agesen. A comparison of software
and hardware techniques for x86 virtualization. In
Proceedings of the 12th international Conference on
Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2006),
ASPLOS-XII, ACM, pp. 2–13.

[31] K. Mahaffey. Security Alert: DroidDream Malware
Found in Official Android Market. http://blog.myloo

11

kout.com/2011/03/security-alert-malware-found

-in-official-android-market-droiddream/, 2011.

[32] L. Litty, H. A. Lagar-Cavilla and D. Lie.
Hypervisor support for identifying covertly executing
binaries. In Proceedings of the 17th conference on
Security symposium (Berkeley, CA, USA, 2008),
USENIX Association, pp. 243–258.

[33] L. Xie, X. Zhang, J.-P. Seifert and S. Zhu.
pBMDS: a behavior-based malware detection system
for cellphone devices. In Proceedings of the third ACM
conference on Wireless network security (New York,
NY, USA, 2010), WiSec ’10, ACM, pp. 37–48.

[34] M. Bishop. Computer Security: Art and Science.
Addison-Wesley, 2003.

[35] M. Kasper, N. Kuntze and A.U. Schmidt.
Subscriber authentication in cellular networks with
trusted virtual sims. In Advanced Communication
Technology, 2008. ICACT 2008. 10th International
Conference on (feb. 2008), vol. 2, pp. 903 –908.

[36] Mulliner, C., Vigna, G., Dagon, D., and Lee,

W. Using Labeling to Prevent Cross-Service Attacks
Against Smart Phones. In Proceedings of the
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA) (Berlin,
Germany, July 2006), vol. 4064 of LNCS, Springer,
pp. 91–108.

[37] N. Feske and C. Helmuth. A Nitpicker’s guide to a
minimal-complexity secure GUI. In Proceedings of the
21st Annual Computer Security Applications
Conference (2005), IEEE Computer Society,
pp. 85–94.

[38] O. Falke, E. Rukzio, U. Dietz, P. Holleis and A.

Schmidt. Mobile services for near field
communication. Ludwig-Maximilians-Universität
(LMU), Munich, Germany, Technical Report
LMUMI-2007-1 (2007).

[39] P. Chou. HTC to open bootloaders. https:
//www.facebook.com/HTC/posts/10150307320018084,
May 2011.

[40] R. Bhardwaj, P. Reames, R. Greenspan, V. S.

Nori and E. Ucan. A Choices Hypervisor on the
ARM architecture. Department of Computer Science,
University of Illinois at Urbana-Champaign 11 (2006).

[41] R. Mijat and A. Nightingale. Virtualization is
Coming to a Platform Near You. ARM White Paper
(2011).

[42] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni,

F. C. M. Martins, A. V. Anderson, S. M.

Bennett, A. Kagi, F. H. Leung and L. Smith.
Intel Virtualization Technology. Computer 38 (May
2005), 48–56.

[43] S. Liebergeld. Lightweight Virtualization on
Microkernel-based Systems. http://os.inf.tu-dresd
en.de/papers_ps/liebergeld-diplom.pdf, January
2010. Diploma Thesis, Chair of Operating Systems,
Technische Universität Dresden.

[44] T. Alves and D. Felton. TrustZone: Integrated
hardware and software security. Tech. rep., ARM
Limited, 2004.

[45] W. Enck, D. Octeau, P. Mcdaniel and S.

Chaudhuri. A Study of Android Application

Security. In Proceedings of the 20th USENIX Security
Symposium (2011).

[46] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J.

Jung, P. McDaniel and A. N. Sheth. TaintDroid:
an information-flow tracking system for realtime
privacy monitoring on smartphones. In Proceedings of
the 9th USENIX conference on Operating systems
design and implementation (Berkeley, CA, USA,
2010), OSDI’10, USENIX Association, pp. 1–6.

[47] X. Zhang, J.-P. Seifert and O. Acicmez. SEIP:
Simple and Efficient Integrity Protection for Open
Mobile Platforms. In Information and
Communications Security (2010), vol. 6476 of Lecture
Notes in Computer Science, Springer Berlin /
Heidelberg, pp. 107–125.

[48] X. Zhang, L. van Doorn, T. Jaeger, R. Perez

and R. Sailer. Secure coprocessor-based intrusion
detection. In Proceedings of the 10th workshop on
ACM SIGOPS European workshop (New York, NY,
USA, 2002), EW 10, ACM, pp. 239–242.

[49] Y. Zhou, X. Zhang, X. Jiang and V. W. Freeh.
Software Creates Privacy Mode To Help Secure
Android Smartphones.
http://news.ncsu.edu/releases/wms-jiang-tissa/,
2011.

APPENDIX

Figure 5: This is one of our Aava devices. It runs a

VM with Android and another VM hosts standard

Linux. A debug board is attached to the right, which

provides a serial line.

12

